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Abstract
In this paper, a summary of the basic simulation

parameters and results of a new study for the Geostationary

Operational Environmental Satellite (GOES) is shown. The

study for GOES involves the simulation of minor

modifications to the current spacecraft, so that the relative

performance of these modifications can be analyzed. The

first modification studied requires the placement of a baseline

inertial reference unit, such as the Dry Rotor Inertia

Reference Unit (DRIRU-II) or the Hemispherical Resonator

Gyro (HRG), onto the spacecraft. The imager/souitder

assembly is currently used to obtain landmark and/or star

observations in order to compensate for spacecraft motions

and external disturbances through ground processing. The
study utilizes the imager/sounder assembly as another attitude

sensor for on-board attitude determination. Also, the addition

of star trackers is used to .provide precise attitude knowledge.

Introduction

The current (GOES I-M) spacecraft specification for the

knowledge requirement is 112 grad. This requirement is

met through ground processing 99% of the time in the
east/west direction and 95% of the time in the north/south

direction. The spacecraft specification for the within-frame

registration is 42 grad. The current spacecraft uses an Earth

Sensor Assembly (ESA) to provide roll and pitch information.
Yaw knowledge is not sensed. However, yaw control is

achieved through roll/yaw coupling. A set of gyros based on

the Digital Integration Rate Assembly (DIRA) also is on the

current spacecraft. However, the DIRA has an operational

lifetime of 2000 hours. Therefore, the on-board gyros are not
used for mission mode attitude determination and control.

An outline of the remainder of this paper proceeds as

follows. First, the simulation model for the gyro, the ESA,

and the imager/sounder assembly are shown. This includes

the simulation parameters used for Earth clouds and Earth

radiance/gradients effects in the ESA, and non-repeatable

errors in the imager/sounder assembly. Then, the simulated

attitude sensor and gyro measurements are used in a Kalman

filter for attitude determination. Results are presented for two

cases: 1) using the ESA, and 2) using both the ESA and

imager/sounder assembly. Next, results using a star tracker
are shown. This includes simulation results with and without

the addition of gyros. Finally, conclusions are stated based on
the simulation results.

Earth Sensor_ Imager/Sotmder

In this section, a brief overview of the simulation

parameters for the gyro model, the ESA model, and the

imager/sounder model is shown. The true angular velocity is
assumed to be modeled by [1]

co=f_g -b-rll (I)

where co is the true angular velocity,C_g is the gyro-

determinedangularvelocity,and b_.isthegyro driftvector,

_.b=_-2 (2)

The 3 x 1 vectors, _-1 and 22' are assumed to be modeled by

a Gaussian white-noise process with

E{_li(,)}=O i=1,'2 (3)

where

E{_i(t)q_:(t')}= Q__ijS(t-t")

L 03×3 _z3×3]

i, j = 1, 2 (4)

(5)

The DRIRU-II drift-rate noise and measurement noise

characteristics are given by c_u = 2.15 xl0 -'4 grad/sec 3/2

and c v = 0.206 grad/sec V2 . The nominal motion of the

spacecraft involves a rotation once per orbit about the

spacecraft's y-axis. Therefore, the nominal angular velocity
is given by
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(6)

where co. isthe orbit rotation (727 x 10 -5 tad /sec).

The ESA measures the spY's roll and pitch angles.

These angles are measured with respect to a moving Earth

frame. The gyros provide attitudes with respect to an

inertiallyfixedframe (e.g.,GCI). Since the body rotation

axisisabout the spacecraft'sy-axis,the body measurement

vectorisgivenby [2]

V-sin(p)cos(r)"

 in<r) <?)

where r and p are the scanner roll and pitch angles,

respectively. The inertial reference vector is given by

I_, = AT(q)B_, (8)

where q is the true quatemion (obtained by kinematic

propagation using the true angular velocity). The ESA
"measurements" are obtained by using the following model

=p+vp +wp (9)

where vp is a zero-mean Gaussian process with a 3a value of

0.02 degrees, and wp represents the non-repeatable errors

due to Earth cloud and Earth radiance/gradients effects. The

non-repeatable error is assumed to be modeled by the

following discrete process

wp(i+l)=Awp(i)+L(l-A2)1/2g(i) (10a)

a = exp(-4 AtB) (10b)

where At is the sampling interval (0.25 seconds for the ESA),

B is the bandwidth (for weather purposes, this set to about

116 days), L is the lo amplitude (experience has shown that

this is about 200 _rad), and g is a zero-mean normal

Gaussian process. This same error model is applied to the

Earth roll "measurement." Since the roll and pitch

measurements from the Earth sensor are small, the body

measurements can be approximatedby

The imager/sounder assembly can measure stars in ,

230E/Wx21ON/S fieldof view, outside of the Earth limb.

The orbit-attitude tracking system contains a catalog of bright
stars visible by the imager/sounder which can sense three

stars at 45 second intervals. For simulation proposes these
stars are assumed to be foumd in different quadrants in the

field of view. The imager/sounder star windows are

staggered so that the data is acquired every 15 minutes. The

imager/sounder measures the tangent of two angles, _1 and

[_2, resulting in a body vector given by [2]

1 [ tan_l]

Bi/s 41+tan2 _$1+ tan2 _2

The imager/sounder '_measurements" arc obtained by.

using the following model

tan_i =tan_i+Vbi +Wbi, i=1,2 (13)

where vb is a zero-mean Gaussian process with a 3_ value of

28 _lrad. The non-repeatable error in the imager/sotmder is

assumed to be modeled by the following process

1 0

wb=[1 0]_x (14b)

where Tl isa zero-mean &aussian process. The standard

deviationof I] isselectedsuch thatthe outputof w b has a

3o value of about 200 _'ad.

Simulation Results

For this part of the study, an investigation of the relative

performance between using on-board gyros and without the

use of gyros was examined. For the on-board gyro case, a

standard Kalman filter with a gym propagated model was
used for attitude determination. The simulations were run for

six cases, which include:I)ESA onlywith no non-repeatable

(NR) errors,2) ESA only with NR errors,3) ESA and

imager/sounder(I/S)with no NR ESA errorsand no NR I/S

errors,4) ESA and I/S with no NR ESA errors and with NR

I/S errors, 5) ESA and US with NR ESA en'ors and no NR I/S
errors, and 6)ESA and I/S with both NR ESA errors and NR
I/S errors.

The fnst two cases involve using the ESA only. A plot of

a typical non-repeatable (radiance/gradients) error effect is

shown inFigureI. From thisplot,themagnitude oftheexror

isseen tobe about 200 _-ad. A Monte Carlo type analysis

shows that200-250 _ isaboutthe 3a range forthiserror.

Error angle plots for the fL,st two cases are shown in Figures
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2and3. Withno NR errors in the ESA, the attitude accuracy
is within 60 /xrad. With the NR errors in the ESA, this

accuracy is degraded to about 200 larad. The large errors in

the yaw angle estimates are due to filter un-observability.

The observability of using an ESA combined with gyro

measurements in a Kalman filter can be shown by using the

simplifying assumption of a constant coefficient system. The

state vector in the Kalman filter is given by [1]

hx = (15)

where A m is a 3 x 1 angle error vector (roll, pitch, yaw), and

Ab is a 3xl gyro-bias error vector. The system error

equations, state matrix and sensitivity matrix are given by

A/: = F A_x + GA_
- (16a)

A_z= HAx+ hv

-s3×3]
F = L03x3 03x3 J

(16b)

where the angular velocity vector (_) is given by Equation

(6), and [_ ×] is the cross product matrix. Therefore, the

state error angle equations are given by

Aal = -co,,Aa 3 - Abl

ad2 = -ab2

a(_ 3 = conAal - _3

The fLrSt and third equations show the

between roll and yaw.

the ESA are given by

(17a)

(17b)

(17c)

coupling effects

The nominal body measurements for

(18)

which reflects the fact that the spacexa_t is Earth-pointing.

From Equations (16)-(18), the state matrix (F) and

sensitivity matrix (H) are now constant.

The observability matrix is given by

O_

H

HF

HF 2

H F 5

(19)

which is an 18x6 dimensional matrix. This matrix must be

rank 6 for the system to be fully observable. However, using
the system matrices in Equation (16))fields a rank 5

observability matrix. A singular value decomposition (SVD)

of the observability matrix can provide an insight to which

states are observable, as well as the degree of observability.
The SVD of Equation (19) is given by

U SV T = 0 (20)

where S is an 18x6 diagonal matrix, and U and V are

unitary matrices with dimensions 18 x18 and 6 x 6,

respectively. The diagonal elements of the first 6 rows of S

yield the singular values of the system. These singular values
yield the degree of observability, which is determined to be

S_

1

1

1

1

7.27 x 10 -5

0

(21)

The columns of V shows which states are observable, and

also show the degree of cross correlated observability in the
states. This matrix is determined to be

V

0 -1 -2.64x10 -5 0 0 0

0 -2.64 x 10 -5 1 0 0 0

7.27 xlO -5 0 0 0 0 1

1 0 0 0 0 -727x10 -5

0 0 0 1 0 0

0 0 0 0 -1 0

(22)
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The l-n'st four columns of V correspond to completely
observable states. The second and third columns of V

indicate that the roll and pitch angle states are completely
observable. Also, there is some correlation between these

states, shown by the -2.64 x 10 -5 term. The sixth column of

V is associated with a singular value of zero. This shows

that the yaw angle state is not observable. This reflects a

higher covariance in the yaw angle estimate, as compared to

the roll and pitch angle covariances (see Figure 4). The

fourth column of V corresponds to the pitch drift-rate state,

which is completely observable, since its associated singular

value is one. The fifth column of V corresponds to the yaw

drift-rate state, which is weakly observably, since its

associated singular value is small (i.e., 7.27x10-5).

However, this state is completely decoupled from any other

state. The first coltmm of V, as well as the sixth column.

shows the coupling between the yaw angle state and the roU

drift-rate state (due to quarter-orbit coupling). This indicates
that the error in this state is attributed to both actual roll rate

errors and yaw angle errors. Since the yaw angle state is not

observable, the roll drift-rate errors and yaw angle errors

cannot be separated. A plot of the gyro drift-rate covariances

is shown in Figure 5. The error covariance of the roll drift-

rate state is larger than the yaw drift-rate error covariance.

This is most likely due to the fact the yaw angle errors cannot
be separated from the roll drift-rate error.

Plots of the four remaining cases, which include the

imager/sounder as art attitude sensor, are shown in Figure 6-
9. A sununary of the results for all cases is shown in Table 1.

Table 1 Attitude Errors for Various Sensor Configurations and Error Sources

Case Error Sources Roll Errors Pitch Errors Yaw Errors

1 noNRESA 60 larad 60 larad lxl05 I.trad

2 NRESA 200 Inad 200 p_rad lxl05 grad

3 no NR ESA, no N-R I/S 60 grad 60 grad 200 grad

4 no NR ESA, NR I/S 1001arad 1130 lamd 200

5 NR ESA, no NR I/S 1(30 I.trad 100 llracl 200

6 NR ESA, NR I/S 200 grad 200 grad 300 Dxad

Since the imager/sounder can measure stars which are off

nadir, yaw angle information is possible..From Table 1,

using the imagerlsounder as another sensor significantly

improves the yaw angle estimate. Also, since the magnitude
of the non-repeatable errors is assumed to be approximately

the same in the ESA and in the imager/sounder assembly, the

attitude errors are also approximately equal when adding

these errors to each sensor individually (i.e., case four and

five). The sixth case involves using both the ESA and

imager/sounder assembly with non-repeatable errors added to

each sensor. A purely deterministically found attitude using

the QUEST method yields errors which are approximately the

same magnitude as case six (see Figure 10). Therefore, the

addition of gyros does not seem to significantly improve the

attitude accuracy.

In order to possibly estimate the non-repeatable effects in

the imager/sounder, a colored noise Kalman filter was

developed. An analysis can be performed by expanding upon

Farrenkopf's model. The assumed model for the colored-

noise Farrenkopf analysis is given by [3]

(i = _g -TIv -b (23a)

/_ = 11u (23b)

_i= &_l+ B/n___ 03c)

where 0 is the scalar (single-axis) attitude angle, _g is the

gyro output, b is the gyro-drift rate, / is .the colored-noise

OUtput, llv, Tlu, and TI t are zero-mean Ganssian processes

with standard deviations of o v, o u, and o t, respectively, and

A l and B t ai'e the colored-noise system matrices, given by
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where (o n is set to orbit rate. Therefore, the full continuous

system matrix from Equations (23) and (24) is given by

Ii -1 0 i]

F= 0 0
0 0

2
0 -COn .

(25)

with the state-transition matrix of F denoted by _. The
measurement model is given by

y = H +v (26)

where v is a zero-mean Gaussian process with covariance r,
and H is given by

H=[1 0 1 0] (27)

Equations (26) and (27) show that the colored-noise is added
to the measurement. The state-noise covariance matrix can
be computed as

2 2 3 ]

Q=I -1/272At2 OU2_O O0 O0 ] (28)
0 0 o_t

where At is the sampling interval. The steady-state error

cov_iance just subsequent to an update is given by

P=_P_r-pHT HPHr +r HP+Q (29)

which can be solved using an eigenvector decomposition of
the Hamiltonian matrix, where @ is the state transistion
matrix of Equation (25).

The standard deviation of the colored-noise input varies

from GI =lxl0 -7 wad to ot =lxl0 -5 wad, which

corresponds to a colored-noise magnitude ranging from
15 wad to 1800wad (these are 30 values). This colored-

noise output simulates the non-repeatable effect in the

imager/sotmder assembly. A plot of the steady-state colored-

noise attitude accuracy is shown in Figure 11. Note that the

standard Farrenkopf analysis with no colored-noise gives an
attitude accuracy of 56 p.rad (30 value), which is similar to

the results shown in Figure 6. This colored-noise analysis

shows that using an accurate model for the non-repeatable

errors can reduce the attitude errors when using a Kalman

filter. However, an analysis using actual data should be

performed to investigate the validity of this approach.

Typical Non.-Repeatal_e Error for ESA Measurements
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Star Tracker

In this section, the simulation results using a star tracker

with and without gyros are presented. First, the star tracker

model and parameters are shown. Then, a covariance

analysis is presented in order to determine the optimal
orientation of the star trackers. Next, the availability of
actual stars for the GOES orbit is shown. Results are then

presented using QUEST [4] to determine the spacecraft
attitude. An Enhanced QUEST algorithm is also derived

which tilters sensor noise. Finally, simulation results are

presented using gyros and a Kalman filter.

All results shown in this section include the dynamics

and external distt_ance in the spacecraft. The GOES Flight

Software Dynamics Model implements the GOES AOCE
fn'mware emulation FORTRAN code from the SS/L into a six

degree of freedom dynamics model. The initial model was

developed to examine the replacement of the ESA with gyros,

and the current capability was developed to compare with

actual GOES performance using the ESA. A star tracker and

star tracker/gyro were also added into the simulation. The
simulation includes rotating solar array inertia effects with

fully coupled inertia tensor dynamics, magnetic torquers with

ideal torque response, and gravity gradient and solar pressure
disturbances.

The star tracker can sense up to six stars in an 8* x 8*

field of view with a sampling interval of 0.1 seconds. The

catalog contains stars which can be sensed up to a 6.0

magnitude. The star tracker measures the tangent of two

angles, _1 and _2, resulting in a body vector given by

, r= ,l

where the z-axis of the star tracker is along the boresight.

The star tracker "measurements" are obtained by using

tan_i =tan_i+vs,, i=1,2 (31)

where v s is a zero-mean Gaussian process with a 3_ value of

87.2665 grad (18 arc-sec).

Each star tracker must be positioned so that sun
obtrusions can be avoided at all times. For the GOES orbit,

and available sun shade for the star tracker, the minimum

exclusion area (allowing for a 3° safety margin) is from 55 °

North to 55 ° South of the Nadir vector. For the single star

tracker case, the 55 ° orientation produces the following order

for knowledge accmacy: (1) roll angle (i.e., about the

spacecraft's x-axis) is known most accurately, then (2) yaw

angle (i.e., about the spacecraft's y-axis), and (3) pitch angle

(i.e., about the spacecraft's y-axis) being the least accurate.

The roll is determined to be most acctmate since the star

tracker is perpendicular to this spacecraft's x-axis. Pitch

accuracy cannot be improved since the 55 ° star tracker

position leads to the y-axis being the least "orthogonal" axis

with respect to the tracker boresight.

For the two tracker case, a covariance analysis was

performed in order to determine the optimal orientation.

Assuming that each star tracker measures one star for

simplicity, the error covariance matrix is given by [5]

t_2 [blblr +b2bf +l(lhxb2)(blxb2) r] (32)
P

Ib_×b212

where tJ is the measurement error standard deviation, and b1

and b2 are measurement vectors of each star. For a North-

South configuration, these measurement vectors are given by

1[0]0 o _

b,=L_n5555.j _ (33a)

I 0o]i0]b2 = -sin5 --- -s (33b)

Lcos55j LcJ

Using Equation (33), the covariance in Equation (32)
becomes

Colored-Noise Kal_ Filter Using the IrratgedSounder Only
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Figure 11 Steady-State Colored-Noise Kalman Filter
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2

1 0 0

1

o o
1

o o 7

(34)

The next configuration studied was to place the both star

trackers 55 ° North (or South) from Nadir and separated by an

angle O, The measurement vectors for this case are given by

Ic l r:lb2 (35)

L j

where _'-sinO, and _-cosO.

Equation (32) for this case is given

_2
P=

2(¢4 _'2_ "2 + C2_'2S2 )

The covariance matrix in

I cZY 2 0 0 1 (36)
X 0 S 2 + C4 $'2C "2 CS'C--¢3"_2"_S

0 cs'_-c3y2_s c2c"2 +c2y2S2|
3

In order to determine the optimal separation angle, a cost

function involving roll and pitch errors (i.e., allowing for

relaxed yaw error conditions) is defined, given by

m)=
2

2(C4_'2_ "2 + C2_'2S 2)

(cEy 2 +s 2 +c4_X_ "2) (37)

Minimizing this cost function with respect to O leads to the

optimal separation given by 0 = 90". Therefore, the

covariance matrix in Equation (36) becomes

1

7 0 0
1

0 (38)

0 0 1

Equation (38) shows that the yaw angle contains the smallest

error, even though yaw was relaxed for the optimal separation
angle. Therefore, comparing Equation (34) and Equation

(38) leads to the conclusion that the optimal location for the

two tracker case is given by one tracker 55 ° North and one
tracker 55 ° South from Nadir.

Simulation Results

Figure 12 shows the actual number of stars within the

North pointing tracker field of view. There is always a
minimum of 2 stars, except for the interval from 2.15 to

2.283 hours. A star with quality 1, but with a magnitude of
6.256, was added in this interval for the QUEST solution.
Figure 13 shows the number of stars within the South

pointing tracker field of view. A quality 2 star (5.137

magnitude) from the interval 15.45 to 15.483 hours, and

another quality 1 star (6.138 magnitude) can be added to
insure a minimum of two stars. This was not done to the

South tracker catalog, since the North tracker was used for

simulations involving one tracker. Figure 14 shows the

combined number of stars for both trackers (without the
addition of any stars). This shows that a minimum of 4 stars

is available for the two tracker case. Also, the percentages of
time in the orbit with the number of stars in the field of view

are shown by Tables 2 and 3.

Table 2 North Pointing Star Catalor

Number of Stars Percentage in FOV

0 0.0

1 0.625

2 10.972

3 15.625

4 27.709

5 23.958

6 21.111

Table 3 South Pointing Star Catalog

Number of Stars Percentage in FOV

0 0.0

1 1.458

2 8.056

3 20.972

4 28.889

5 23.272

6 17.153

In this section simulation results using the QUEST and

Enhanced QUEST algorithms without gyros are presented.

The QUEST algorithm minimizes the following cost function

J(A) =x-z_,1+'_- B2s,-AIs, Ia
Z k=l C_2 F"

(39)
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where A is the attitude matrix, and n is the number of stars

available. QUEST is a deterministic approach which utilizes

a point-by-point solution. Therefore, previous measurements

are not utilized in the attitude solution. This algorithm

requires at least two star measurements to determine the

attitude. Therefore, a star is added (as previously described)

to the single star tracker case.

In general, the attitude knowledge is determined more

accurately as the number of star measurements at one time
inaeases and/or the separation distance between stars

inaeases. This can be seen by the deterministic error

covariance, given by [4]

-1
n

<40)
k--1

Figure 15 shows the attitude errors from QUEST determined

attitude using a single (North) star tracker. Note the large

errors about 2 hours into the simulation, which corresponds
to the point where the star availability is mostly only 2 stars.

Figure 15 also shows the attitude errors along with the 3a

bounds from Equation (40). This shows excellent agreement

between theory and simulation. Figure 16 shows the attitude

errors using both star trackers. Figure 17 also shows the 3_
bounds for the two star tracker case. This shows the

signilicant improvement in attitude knowledge by using two
trackers.

In order to fm_er improve the attitude accuracy, an

Enhanced QUEST algorithm (EQA) was developed. This is a

simple first-order Kalman filter which combines a propagated

model with the QUEST determined attitudes, Since gyros are

not used for this case, the angular velocity is assumed to be

perfect (i.e., given by Equation (6)). This assumption is not
true, since external disturbances, and control and sensor

errors are present in the actual system. Typical control errors

using the ESA are shown in Figure 17. This shows the large

errors and dynamic coupling in the rolYyaw axis. The EQA

is given by

_,+1 (-) = exp{1D_) At} _, (+) (41a)

(+)= (-)+ (41b)

where At =0.1 seconds, q--k is the QUEST determined

attitude at time tk, and a is a scalar gain. This gain was

determined by minimizing the attitude errors from the
simulated runs. A value which is too small adds too much

model corrections, and tends to neglect measurements. A

value which is too large adds too much measurement noise,

and tends to neglect model corrections. A value of a = 0.05

was detemained to be optimal. The EQA covariance is

derived by re-writing Equation (41) as

(42b)

where ® denotes quatemion multiplication (see [1]).
QUE__ST determined quatemion is written as

The

(43)

where qk÷l is the true quaternion, aad 8q-k+ 1 is a three

component error vector. Substituting Equation (43) into

Equation (42a), and post-multiplying both sides of the

resulting equationby q_lI yields

Using a fn'st-order approximation yields the following

covariance covariance for the EQA

Pqqk+1= (1-0_)2_3 Pqqk dp_ +Ot2p_l_k (45)

where • 3 is the state transition matrix of [__ x]. Since this

malrix is constant and nearly the identity matrix, the diagonal

elements of Equation (45) approach the following steady-state

0_

P_k = 2--L-'ffP_ k (46)

Figure 18 shows the attitude errors and bounds from Equation

(46) using one star tracker and the EQA. Comparing Figme

18 with Figure 15 shows a significant improvement using the

EQA. Figure 19 shows the attitude errors using two trackers

and the EQA. Comparing Figure 19 with Figure 16 again

shows a significant improvement using the EQA.

In this section, the results using gyros and a Kalman filter m
presented. Two gym cases are simulated. The first case

involves the utilization of the DRIRU-II. The second case

involves the utilization of the of the HRG. The parameters
for both gyros are summarized in Table 4.
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Table 4 Gyro Parameters

Parameters DRIRU-II HRG

cr u (white noise) 2.15x10--4 l.trad/sec3/2 1.55×10--4 g.rad/sec3/2

(Yv (random walk) 0.206 _trad/sec 1/2 1.6 _trad/sec 1/2

The gyro model is shown by Equations (1) and (2). The
relative performance of the attitude estimation can be found

by numerically iterating the Kalman filter equations to steady
state, but Farrenkopf [3] obtained analytic solutions for the

case when the three attitude error angles are assumed

decoupled. Farrenkopfs results for the preupdate and

postupdate attitude error standard deviations, denoted by
(-) and a (+), respectively, can be written as

1

o(-) =o (_2-1) _ (47a)

(4to)

where

( )'I1 + 1 Su + _[ Su + $2v + 3 Szu _ (48a)_=2 2

1

_t =[4+ S2 +(1/12)Su2]_ (48b)

3

S,, = _. At2 / a (48c)

1

Sv = (3v Al 2 ]G (48d)

In the limiting case of very frequent updates, the preupdate
and the postupdate attitude error standard deviations both

approach the continuous-update limit, given by

1

¢i** = At4o 2 + 2_ uOvZ_t (49)

Using the parameters in Table 4 in Equation (49), it was

determined that the DRIRU-II steady-state error is

approximately 2.8 times better (i.e., more accurate) than the

HRG. This is also shown in the simulations. Figures 20 and
21 show the attitude errors using the HRG for the one tracker

and two tracker cases, respectively. Figures 22 and 23 show
the attitude errors using the DRIRU-II for the one tracker and

two tracker cases, respectively. Comparing Figure 20 to
Figure 22, and Figure 21 to Figure 23, it is seen that the

DRIRU-II is approximately 2 to 3 more accurate for the

attitude knowledge than using the HRG. Results for the cases

without gyros and cases with gyros are shown in Table 5 and
Table 6, respectively.

Table S Attitude Error Results Without Gyro_

Cases Simulated

QUEST (1 Tracker)

Roll Error

(_rad) 3c

60

Pitch Error

1250

Yaw Error

(grad) 3c

900

QUEST (2 Trackers) 35 70 50

EQA (1 Tracker) 12 225 175

EQA (2 Trackers) 6 10 8
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Table 6 Attitude Error Results With Gyros

CasesSimulated

Roll Error

(l.trad)3G

Pitch Error

(wad) 3_

KF, DRIRU-II (1 Tracker) 3 15 10

KF, DRIRU-H (2 Trackers) 2 3 2.5

KF, I-IRG (1 Tracker) 7 30 12

KF, HR.G (2 Trackers) 5 9 7

_5

Number of Stars Available for Tracker 1 Nocth Tracker)

i i i

5

!
Z3

2

1

I I I I I
00 4 8 12 1- 20

Time (Hr)

Fimtre 12 Avai!abilitv of Stars for the North Tracker

Number of Stars Available for Tracker 2 (Sout_ Tracker)

i i ; i v

7 ............................... , ................ •................ : ................................

6

i

1 ............. :............... '................ :............

0 i i i
0' 4 12

Trne (H0

Fieure 13 Availability of Stars for the South Tracker

24

24

Number of Stars Available with Born Trackers

14 _ , ,

12 •

10

ee

#
6

4

_rm (Hr)

A
"o

E

n-

24

3S0

Fit, ure 14 Availability of Stars for Both Trackers

Attitude Errors With Dynam_ Using Om Tradcer (QUEST)

, ____.,_ ,-_ i
[

• _ _ --:r--: : .....

i L

, .UU,. ......
!'--'1_ _=== i

I I

12 16 20 24

4000

q p,1]u,',_-"-_ T_

i

4 8

" -v- 'q_ _'_ _ !_"_r'l_'_
/

12 16 20 24

_me (Hq

Fieure 15 Attitude Errors and Bounds Usin_ One Tracker

162



Attitude Err_ With Dynamics Using Two Trackers (QUEST)
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Conclusions

This study provided some insightful information for

using gyros on the GOES spacecraft. It was determined that

the gyros do not significantly reduce the non-repeatable errors

in the ESA. This was shown by comparing Figure 9 with

Figure 10. Since the relative error is approximately equal in
these two plots, we conclude that the utilization of on-board

gyros does not significantly improve performance. Also,

using gyros does not provide any observability in the yaw
angle estimate, when using the ESA.

The star tracker simulation results show a significant

improvement over the ESA attitude knowledge errors. The

greatest improvements were showing using either: (1) two
trackers with the EQA, or (2) one tracker and a DRIRU-II

type gyro, and (3) two trackers and either an HRG type gyro

or a higher quality gyro such as the DRIRU-I/. Adding gyros
to the spaceoaft is the most ideal case since the filter

bandwidth is larger than the EQA filter bandwidth (i.e., the

Kalman triter with gyros can sense higher frequency
spacecraft motions than an EQA). The utilization of on-

board gyros may also improve the pointing accuracy, since
the controller bandwidth may be increased.
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